Abstract

Understanding the atomic and molecular phenomena occurring in working catalysts and nanodevices requires the elucidation of atomic migration originating from electronic excitations. The progressive atomic dynamics on metal surface under controlled electronic stimulus in real time, space, and gas environments are visualized for the first time. By in situ environmental transmission electron microscopy, the gas molecules introduced into the biased metal nanogap could be activated by electron tunneling and caused the unpredicted atomic dynamics. The typically inactive gold was oxidized locally on the positive tip and field-evaporated to the negative tip, resulting in the atomic reconstruction on the negative tip surface. This finding of a tunneling-electron-attached-gas process will bring new insights into the design of nanostructures such as nanoparticle catalysts and quantum nanodots and will stimulate syntheses of novel nanomaterials not seen in the ambient environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.