Abstract
Quantum engineering now allows to design and construct multi-qubit states in a range of physical systems. These states are typically quite complex in nature, with disparate, but relevant properties that include both single and multi-qubit coherences and even entanglement. All these properties can be assessed by reconstructing the density matrix of those states—but the large parameter space can mean physical insight of the nature of those states and their coherence can be hard to achieve. Here, we explore how the Wigner function of a multipartite system and its visualization provides rich information on the nature of the state, not only at illustrative level but also at the quantitative level. We test our tools in a photonic architecture making use of the multiple degrees of freedom of two photons.Graphic abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.