Abstract

Recent improvements in synchrotron-based X-ray fluorescence (SXRF) microscopy established it as an advanced analytical tool for analyzing 2D- and 3D distribution of mineral elements in plants. Among existing imaging techniques, SXRF microscopy offers several unique capabilities, including in situ metal quantification in plant tissues and high sensitivity, as low as 1mgkg-1, at the nanoscale spatial resolution. SXRF is increasingly utilized in different plant science disciplines to provide a fundamental understanding of metal homeostasis, and the function of trace elements in plant metabolism and development. Here, we describe methods for SXRF imaging, including sample preparation, the optimization of conventional SXRF for analyzing trace elements, and the development of confocal SXRF (C-SXRF).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.