Abstract

The paper addresses the problem of visualizing large scale RDF data via a 3-S approach, namely, by using, 1) Subsets: to present only relevant data for visualisation; both static and dynamic subsets can be specified, 2) Summaries: to capture the essence of RDF data being viewed; summarized data can be expanded on demand thereby allowing users to create hybrid (summary-detail) fisheye views of RDF data, and 3) Sampling: to further optimize visualization of large-scale data where a representative sample suffices. The visualization scheme works with both asserted and inferred triples (generated using RDF(S) and OWL semantics). This scheme is implemented in Oracle by developing a plug-in for the Cytoscape graph visualization tool, which uses functions defined in a Oracle PL/SQL package, to provide fast and optimized access to Oracle Semantic Store containing RDF data. Interactive visualization of a synthesized RDF data set (LUBM 1 million triples), two native RDF datasets (Wikipedia 47 million triples and UniProt 700 million triples), and an OWL ontology (eClassOwl with a large class hierarchy including over 25,000 OWL classes, 5,000 properties, and 400,000 class-properties) demonstrates the effectiveness of our visualization scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call