Abstract

AbstractControlling the spatial distribution of dopants in graphene is the gateway to the realization of graphene‐based electronic components. Here, it is shown that a submonolayer of self‐assembled physisorbed molecules can be used as a resist during a post‐synthesis nitrogen doping process to realize a nanopatterning of nitrogen dopants in graphene. The resulting formation of domains with different nitrogen concentrations allows obtaining n–n’ and p–n junctions in graphene. A scanning tunneling microscopy is used to measure the electronic properties of the junctions at the atomic scale and reveal their intrinsic width that is found to be ≈7 nm corresponding to a sharp junction regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call