Abstract

The regularized optimal mass transport (rOMT) problem adds a diffusion term to the continuity equation in the original dynamic formulation of the optimal mass transport (OMT) problem proposed by Benamou and Brenier. We show that the rOMT model serves as a powerful tool in computational fluid dynamics for visualizing fluid flows in the glymphatic system. In the present work, we describe how to modify the previous numerical method for efficient implementation, resulting in a significant reduction in computational runtime. Numerical results applied to synthetic and real-data are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.