Abstract

AbstractThe catalytic performance of composite catalysts is not only affected by the physicochemical properties of each component, but also the proximity and interaction between them. Herein, we employ four representative oxides (In2O3, ZnO, Cr2O3, and ZrO2) to combine with H‐ZSM‐5 for the hydrogenation of CO2to hydrocarbons directed by methanol intermediate and clarify the correlation between metal migration and the catalytic performance. The migration of metals to zeolite driven by the harsh reaction conditions can be visualized by electron microscopy, meanwhile, the change of zeolite acidity is also carefully characterized. The protonic sites of H‐ZSM‐5 are neutralized by mobile indium and zinc species via a solid ion‐exchange mechanism, resulting in a drastic decrease of C2+hydrocarbon products over In2O3/H‐ZSM‐5 and ZnO/H‐ZSM‐5. While, the thermomigration ability of chromium and zirconium species is not significant, endowing Cr2O3/H‐ZSM‐5 and ZrO2/H‐ZSM‐5 catalysts with high selectivity of C2+hydrocarbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.