Abstract
Rab7 GTPase is known to regulate protein degradation and intracellular signaling via endocytic sorting and is also known to be involved in peripheral neurodegeneration. Mutations in the GTP-binding pocket of Rab7 cause Charcot-Marie-Tooth type 2B (CMT-2B) neuropathy. It has been suggested that the CMT-2B-associated Rab7 mutants may disrupt retrograde survival signaling by degrading the signaling endosomes carrying the nerve growth factor (NGF) and its TrkA receptor. Studying the cotrafficking of Rab7 and retrograde-TrkA endosomes in axons is therefore important to understand how Rab7 mutants affect the NGF signaling in neurons. However, tracking the axonal transport of Rab7 and TrkA with conventional microscopy and assigning the transport directionality in mass neuronal cultures pose some practical challenges. In this chapter, we describe the combination of a single-molecule imaging technique, pseudo-total internal reflection fluorescence (pTIRF) microscopy, with microfluidic neuron cultures that enables the simultaneous tracking of fluorescently labeled Rab7- and TrkA-containing endosomes in axons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.