Abstract

In this work, we report a mapping of charge transport in silicon nanocrystals (nc-Si) embedded in SiO2 dielectric films with electrostatic force microscopy. The charge diffusion from chargednc-Si to neighboring uncharged nc-Si in the SiO2 matrix is found to be the dominant mechanism for the decay of the trapped charge in the nc-Si. The trapped charge and the charge decay have been determined quantitatively from the electrical force measurement. An increase in the area of the charge cloud due to the charge diffusion has been observed clearly. In addition, the blockage and acceleration of charge diffusion by the neighboring charges with the same and opposite charge signs (i.e., positive or negative), respectively, have been observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.