Abstract
AbstractRapid advancement in vision recording technologies is increasing the importance and production of video data in a wide range of applications. This paper proposed a novel perspective of multifrequency phase inference for characterizing especially challenging nonstationary and often small motions in optical measurement. The model estimates and adjusts the phase information by the multi‐frequency phase retrieval, which is derived from the maximum likelihood formulation with block matching 3D sparsity priors. Estimated phase jumps are removed by a robust solution of the 2D phase unwrapping problem. These considerations are supported by applications of dynamic response identification in structural health monitoring. When compared to state‐of‐the‐art techniques, the proposed method readily yielded high‐quality magnifications on real videos, with less noise and better anti‐noise performance. The proposed method also demonstrated uniformly high skill in extracting clearer time‐domain motion estimation of video components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer-Aided Civil and Infrastructure Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.