Abstract

Insects that feed on plants protected by latex canals often sever leaf veins or cut trenches across leaves before feeding distal to the cuts. The insects thereby depressurize the canals and reduce latex exudation at their prospective feeding site. How the cuts affect the distribution and concentration of latex chemicals was not known. We modified a microwave-assisted extraction technique to analyze the spatial distribution of alkaloids in leaves of Lobelia cardinalis (Campanulaceae) that have been trenched by a plusiine caterpillar, Enigmogramma basigera (Lepidoptera: Noctuidae). We produced sharp two dimensional maps of alkaloid distribution by microwaving leaves to transfer alkaloids to TLC plates that were then sprayed with Dragendorff's reagent to visualize the alkaloids. The leaf prints were photographed and analyzed with image processing software for quantifying alkaloid levels. A comparison of control and trenched leaves documented that trenching reduces alkaloid levels by approximately 50% both distal and proximal to the trench. The trench becomes greatly enriched in alkaloids due to latex draining from surrounding areas. Measurements of exudation from trenched leaves demonstrate that latex pressures are rapidly restored proximal, but not distal to the trench. Thus, the trench serves not only to drain latex with alkaloids from the caterpillar's prospective feeding site, but also to isolate this section, thereby preventing an influx of latex from an extensive area that likely extends beyond the leaf. Microwave-assisted extraction of leaves has potential for diverse applications that include visualizing the impact of pathogens, leaf miners, sap-sucking insects, and other herbivores on the distribution and abundance of alkaloids and other important defensive compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call