Abstract

The shear stress–shear displacement relationship and shear strength parameters of the interface between the pipe and the surrounding soil are important for designing the jacking force. One most commonly used method to measure the shear strength of the pipe–soil interface is the direct shear test. This paper presents the results of a series of direct shear tests conducted in the laboratory on the pipe–soil interfaces for different moisture contents. Simultaneously, digital image correlation is used to supplement the research of the horizontal displacement field of the interface. The results show that the increase of normal stress will makes the interface more prone to strain hardening during the shearing process, and the influence of the change of specimen moisture content on the interface strain characteristics gradually weakens. The shearing process of the specimen mainly involved shearing contraction, and slight shear dilation occurs only when the moisture content is small. We proposed a unified model for describing the shear volumetric change caused by the combined action of moisture content and normal stress. The shear displacement field presents a layered distribution, which is related to the shear displacement corresponding to the shear stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call