Abstract

A series of nanocomposites based on cellulose nanocrystals (CNCs) and polymethyl acrylate (PMA) with covalently incorporated 1,2-dioxetane as a luminescent mechanophore were prepared. Through surface-initiated single-electron transfer radical polymerization, the CNCs nanofiller offers good compatibility with polymer matrix. As a consequence, all the composite materials exhibit reinforced mechanical properties with increased stiffness and strength. Most importantly, 1,2-dioxetane is demonstrated as a sensitive platform to characterize the dissipation pathway of fracture energy, as well as the polymer chain scission in the Mullins effect within these polymer nanocomposites. The combined use of mechanical macroscopic testing and molecular bond scission data herein provides detailed information on how force distributes and failure occurs in complex soft materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.