Abstract
In this paper visualization techniques for modern closed circuit television (CCTV) smart city services are discussed with application to prevention of threats. Unconventional approaches to the intelligent visual data processing are proposed in order to support video surveillance operators, thus to make their work less exhaustive and more effective. Although registration of a huge amount of video data requires development of intelligent and automatic signal processing information extraction techniques, improvement of visualization methods for operators is also a very important task, because of the crucial role the human factor plays and should always play in the decision making, e.g. in the operator reactions to various crisis situations, which can never be fully eliminated by artificial intelligence. Four software based mechanisms connected with a standard or with a slightly extended hardware are proposed as options for the CCTV operators. They utilize rather known ideas but are implemented with new extensions to original algorithms, as well as with additional, innovative modifications and solutions (not presented in the literature). With them they become reliable and efficient tools for the CCTV systems. First, generation of cylindrical panoramas is suggested in order to make long-time video content analysis of a defined area easier and faster. Using panoramas it is possible to reduce the time that is required to watch the video by a factor of hundreds or even thousands and perform an efficient compression of the video stream for the long-time storage. Second, the controlled stereovision option is discussed for quicker and more precise extraction of relevant information from the observed scene. Third, the thermo-vision is analyzed for faultless detection of pedestrians at night. Finally, a novel high dynamic range (HDR) technique is proposed, dedicated to the CCTV systems, in contrast to other typical entertainment oriented HDR approaches, for clear visualization of important and meaningful image details, otherwise invisible. We validated usefulness of the proposed techniques with many experiments presented in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.