Abstract

The size of red blood cells (RBC) is on the same order as the diameter of microvascular vessels. Therefore, blood should be regarded as a two-phase flow system of RBCs suspended in plasma rather than a continuous medium of microcirculation. It is of great physiological and pathological significance to investigate the effects of deformation and aggregation of RBCs on microcirculation. In this study, a visualization experiment was conducted to study the microcirculatory behavior of RBCs in suspension. Motion and deformation of RBCs in a microfluidic chip with straight, divergent, and convergent microchannel sections have been captured by microscope and high-speed camera. Meanwhile, deformation and movement of RBCs were investigated under different viscosity, hematocrit, and flow rate in this system. For low velocity and viscosity, RBCs behaved in their normal biconcave disc shape and their motion was found as a flipping motion: they not only deformed their shapes along the flow direction, but also rolled and rotated themselves. RBCs were also found to aggregate, forming rouleaux at very low flow rate and viscosity. However, for high velocity and viscosity, RBCs deformed obviously under the shear stress. They elongated along the flow direction and performed a tank-treading motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call