Abstract

Plasmon-enhanced gold nanorod (AuNR) with high photothermal conversion efficiency is a promising light-controllable nanodrug delivery system for cancer therapy. Understanding the mechanism for the light-controllable drug release of AuNR delivery systems is important for the development of nanomedicine. In this study, the rhodamine B (RB) released from AuNR-RB nanodelivery system was quantitated and visualized by using two-photon luminescence (TPL) imaging combined with correlation spectroscopy. The photofragmentation of AuNR induced by femtosecond pulsed laser was revealed by TPL correlation spectroscopy when the laser energy was above the thermal damage threshold of AuNR, and the RB released from this nanodrug delivery system was visualized by TPL imaging. Furthermore, the photofragmentation-induced release of RB from AuNR-RB nanodelivery system was visualized in living MCF-7 breast cancer cells by TPL imaging combined with correlation spectroscopy. These results provided a novel optical approach to quantify the release of drugs from gold nanocarriers in complex biological media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call