Abstract

Abstract Two-phase flow inside the two-phase closed thermosyphon (TPCT) including evaporator, adiabatic and condenser sections was visually investigated in order to qualitatively analyze the complicated behaviors of both liquid film and vapor flows simultaneously. The semi-cylindrical channel which is 650 mm long was formed in the long copper block and the flat face of the channel was covered with a flat Pyrex glass for visual observation. The inner diameter of the semi-cylindrical channel was 25 mm and distilled water was used as a working fluid. The filling ratio of the thermosyphon was fixed at 0.5 and the inclination angle was set to 60º. As the heat flux increases, nucleate boiling becomes dominant and the bursting motion starts to begin in the liquid pool at the evaporator section. The bursting liquid flow reaches the condenser section and changes the condensation regime from dropwise to filmwise by flooding the condenser wall, which results in the decrease of condensation heat transfer coefficient. In addition, the vigorous vapor generation which occurs in the liquid pool at the evaporator section disturbs the circulation of the condensate film from the condenser to the evaporator section. As a result, the local dry-out occurs on the evaporator section with increasing heat flux, so the boiling heat transfer coefficient is decreased. [This research was supported by the Ministry of Science and ICT through the National Research Foundation of Korea (NRF-2018H1D3A2000929).]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call