Abstract

A topological pharmacophore (TP) is a chemical graph-based pharmacophore representation, where nodes are pharmacophoric features (PF) and edges are topological distances between PFs. Previously proposed sparse pharmacophore graphs (SPhGs) for TPs were shown to be effective in identifying structurally different active compounds while maintaining the interpretability of the graphs. However, one limitation of using SPhGs as queries is that many structurally similar SPhGs can be identified from a set of active compounds, requiring the classification and visualization of SPhGs, followed by an understanding of the pharmacophore hypotheses. In this study, we propose a scheme for SPhG analysis based on dimensionality reduction techniques with the graph edit distance (GED) metric. This metric enables measuring similarities among SPhGs in a quantitative manner. The visualization of SPhGs, which themselves are the graphs shared by active compounds, can help us understand the pharmacophore hypotheses as well as the data set. As a proof-of-concept study, we generated two-dimensional SPhG-maps using three dimensionality reduction techniques for six biological targets. A comparison with other pharmacophore representations was also conducted. We demonstrated knowledge extraction (interpretation of the data set) from the generated maps. Our findings include a suitable mapping algorithm as well as a pharmacophore hypothesis analysis procedure using an SPhG-map.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.