Abstract

A method based on an original electron microscope created for investigating photoelectron beams is presented. It ensures a nanometer spatial resolution and picosecond time resolution. Electrons appearing when a metal needle is irradiated by femtosecond laser pulses are transmitted through a dielectric microcapillary and are subjected to a ponderomotive potential created by femtosecond laser radiation focused near the capillary tip. The position-sensitive detection scheme allows for the detection of the spatial profile of a photo-electron beam with a magnification of K ≅ 4 × 104. The time structure of the photoelectron beam is visualized by scanning the delay time between laser pulses irradiating the needle and a laser pulse focused near the capillary tip.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.