Abstract
In this paper, we propose a system to visualize the relationships in huge quantities of Internet news by twodimensional self-organizing maps instead of the conventional methods of listing Internet news. In the proposed method, morphological analysis is conducted on the texts of Internet news to generate input vectors with elements of keywords. The characteristics specific to Internet news that many of the vector elements become sparse allows dimensional reductions as well as speeding up of self-organizing mapping with restricted search regions in learning. We verify through evaluation experiments with the data of 80 pieces of news that the proposed system can reduce computation time by 75% to 99% and can create more efficient SOM compared with the generally available SOM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.