Abstract

ABSTRACTA fluorescence microscope was used for visualization of the anticaging effect of a commercial xylanase on milled wheat, microtome cuts of wheat grains, and digesta samples obtained from piglets 1 or 4 h after feeding a wheat‐based diet (wheat 490 g/kg of diet, barley 100 g/kg of diet, and oats 100 g/kg of diet). Both starchy endosperm and aleurone cell walls were shown to be broken down by Ronozyme WX commercial xylanase. Data obtained by fluorescence microscopy was supplemented with measurements of starch and xylose released as a result of degradation of nonstarch polysaccharides by the xylanase. The results visualize and provide evidence that Ronozyme WX commercial xylanase can overcome the so‐called cage effect. This release of nutrients from their encapsulation in cereal cell wall structures has positive impact on nutrient digestibility and partially explains the positive effect of xylanase supplementation on livestock performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.