Abstract

Time-lapse imaging is a powerful method to analyze migrating cell behavior. After fluorescent cell labeling, the movement of the labeled cells in culture can be recorded under video microscopy. For analyzing cell migration in the developing brain, slice culture is commonly used to observe cell migration parallel to the slice section, such as radial cell migration. However, limited information can be obtained from the slice culture method to analyze cell migration perpendicular to the slice section, such as tangential cell migration. Here, we present the protocols for time-lapse imaging to visualize tangential cell migration in the developing chick optic tectum. A combination of cell labeling by electroporation in ovo and a subsequent flat-mount culture on the cell culture insert enables detection of migrating cell movement in the horizontal plane. Moreover, our method facilitates detection of both individual cell behavior and the collective action of a group of cells in the long term. This method can potentially be applied to detect the sequential change of the fluorescent-labeled micro-structure, including the axonal elongation in the neural tissue or cell displacement in the non-neural tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call