Abstract
Near-field photoluminescence (PL) imaging spectroscopy was used to investigate multi-exciton and charged-exciton states confined in a single GaAs interface fluctuation quantum dot. We determined the origin of peaks in the PL spectra by employing a wavefunction mapping technique. We observed distortion of the exciton wavefunction due to the electric field produced by an excess electron at a nearby confined state. Near-field wavefunction mapping was demonstrated to be a powerful tool for visualizing the local environment, which affects the emission properties of quantum dots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.