Abstract
Single cell RNA sequencing (scRNA-seq) is a powerful tool to analyze cellular heterogeneity, identify new cell types, and infer developmental trajectories, which has greatly facilitated studies on development, immunity, cancer, neuroscience, and so on. Visualizing of scRNA-Seq data is fundamental and essential because it is critical to biological interpretation. Although principal component analysis (PCA) is used for visualizing scRNA-seq at early studies, t-Distributed Stochastic Neighbor embedding (t-SNE), an unsupervised nonlinear dimensionality reduction technique, is widely used nowadays due to its advantage in visualization of scRNA-seq data. Here, we detailed the process of visualization of single-cell RNA-seq data using t-SNE via Seurat, an R toolkit for single cell genomics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.