Abstract

Many questions regarding dynamic materials could be answered by using time-resolved ultra-fast imaging techniques to characterize the physical and chemical behavior of materials in extreme conditions and their evolution on the nanosecond scale. In this work, we perform multi-frame phase-contrast imaging (PCI) of micro-voids in low density polymers under laser-driven shock compression. At the Matter in Extreme Conditions (MEC) Instrument at the Linac Coherent Light Source (LCLS), we used a train of four x-ray free electron laser (XFEL) pulses to probe the evolution of the samples. To visualize the void and shock wave interaction, we deployed the Icarus V2 detector to record up to four XFEL pulses, separated by 1-3 nanoseconds. In this work, we image elastic waves interacting with the micro-voids at a pressure of several GPa. Monitoring how the material’s heterogeneities, like micro-voids, dictate its response to a compressive wave is important for benchmarking the performances of inertial confinement fusion energy materials. For the first time in a single sample, we have combined an ultrafast x-ray framing camera and four XFEL pulse train to create an ultrafast movie of micro-void evolution under laser-driven shock compression. Eventually, we hope this technique will resolve the material density as it evolves dynamically under laser shock compression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.