Abstract

The bimolecular fluorescent complementation (BiFC) is a fluorescent complementation method largely used to investigate protein-protein interaction in living cells. This method is based on the ability of two nonfluorescent fragments to assemble forming a native fluorescent reporter with the same spectral properties of the native reporter. Such fragments are fused to putative protein partners that in case of interaction will bring the two halves in close proximity, allowing for the reconstitution of an active fluorescent reporter. The BiFC has been used to investigate protein-protein interaction in a number of different organisms, including plants. In plant cells, many essential pathways of protein trafficking and subcellular localization necessitate the intervention of several protein units organized in multisubunit complexes. It is well known that vacuolar sorting of many secretory soluble proteins require the intervention of specific transmembrane cargo receptors able to interact forming dimers. In this chapter we describe a BiFC method for the efficient visualization of RMR (Receptor Membrane RING-H2) type 2 dimerization in agro-infiltrated Nicotiana benthamiana leaves. Furthermore, this relatively simple method represents an optimal strategy to test protein-protein interaction using any other putative protein partners of interest in plant cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call