Abstract

We have used correlated scanning EM (SEM) and multiphoton fluorescence microscopy to visualize budding of virus-like particles (VLPs) of Rous sarcoma virus (RSV) and HIV type 1 (HIV-1). When the Gag structural protein was expressed alone as a GFP fusion, most budding particles appeared morphologically aberrant, but normal assembly could be rescued by coexpression of untagged Gag protein. Imaging of live cells allowed budding to be seen in real time as the disappearance of fluorescent spots from the dorsal cell surface. The disappearance of very bright spots containing clusters of VLPs often occurred in a stepwise fashion. Even after imaging times >1 h, only a minority of the spots disappeared, suggesting that some might be budding-incompetent complexes. On individual cells, we enumerated both the fluorescent puncta and the budding structures visible by SEM and compared these numbers for WT Gag proteins and for Gag proteins that were blocked at the last step in budding by a late domain mutation. For the mutant HIV-1 and RSV proteins, almost all of the fluorescent spots corresponded to budding structures. For WT RSV, the dorsal side of cells showed 3-fold more fluorescent spots than budding structures, suggesting that formation of the polymerized Gag shell precedes bulging out of the membrane. For WT HIV-1, most fluorescent spots corresponded with budding structures, consistent with the slower budding rate of this virus. Combining these two types of microscopy will allow innovative approaches for elucidating the mechanism of retrovirus budding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call