Abstract

Various pyro-devices are used in space structures because of their high power-to-weight ratio, high reliability, and compact size. However, when a pyro-device fires, it generates a strong, high-frequency shock wave called a pyroshock wave, which causes high-frequency-sensitive electronic equipment to malfunction. Therefore, it is important to analyze and minimize pyroshock waves near electronic equipment to prevent damage. In this paper, we propose a shock wave scanning method by a Q-switched laser to analyze shock reduction and visualize shock wave propagation in a real-world complex structure. This technique was applied to evaluate and visualize the shock reduction by rubber insulators mounted in a configuration such that a pyroshock wave is transferred and propagated via a butyl rubber mount to an electronic component mounting panel. An average of 20% in the mean acceleration differences in shock response spectra between an actual pyroshock wave and a laser-simulated pyroshock wave was achieved. The use of the butyl rubber mount reduced the shock wave by 75%, and the reduced pyroshock propagation was quantitatively visualized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.