Abstract
Polar nanoregions (PNRs) play a key role in the functionality of relaxor ferroelectrics; however, visualizing them in lead-free relaxor ferroelectrics with high lateral resolution is still challenging. Thus, we studied herein the local ferroelectric domain distribution of the lead-free bismuth-based (1 -x)(Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3) -x(Bi1/2Mg1/2TiO3) piezoceramics which show a relaxor behavior using dual AC resonance tracking (DART) piezoresponse force microscopy (PFM). By using excitation frequencies at either side of the contact resonance peak of the torsional cantilever vibration, an enhanced contrast in the amplitude and phase images of the piezoresponse can be achieved. Additionally, this tracking technique reduces the topographical crosstalk while mapping the local electromechanical properties. The true drive amplitude, drive phase, contact resonant frequency and quality factor can be estimated from DART-PFM data obtained with vertically or torsionally vibrating cantilevers. This procedure yields a three-dimensional quantitative map of the local piezoelectric properties of the relaxor ferroelectric samples. With this approach, torsional DART allowed for the visualization of fine substructures within the monodomains, suggesting the existence of PNRs in relaxor ferroelectrics. The domain structures of the PNRs were visualized with high precision, and the local electromechanical characteristics of the lead-free relaxor ferroelectrics were quantitatively mapped.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.