Abstract

Among two-dimensional (2D) transition metal dichalcogenides (TMDs), platinum diselenide (PtSe2) stands at a unique place in the sense that it undergoes a phase transition from type-II Dirac semimetal to indirect-gap semiconductor as thickness decreases. Defects in 2D TMDs are ubiquitous and play crucial roles in understanding and tuning electronic, optical, and magnetic properties. Here we investigate intrinsic point defects in ultrathin 1T-PtSe2 layers grown on mica through the chemical vapor transport (CVT) method, using scanning tunneling microscopy and spectroscopy (STM/STS) and first-principles calculations. We observed five types of distinct defects from STM topography images and obtained the local density of states (LDOS) of the defects. By combining the STM results with the first-principles calculations, we identified the types and characteristics of these defects, which are Pt vacancies at the topmost and next monolayers, Se vacancies in the topmost monolayer, and Se antisites at Pt sites within the topmost monolayer. Our study shows that the Se antisite defects are the most abundant with the lowest formation energy in a Se-rich growth condition, in contrast to cases of 2D molybdenum disulfide (MoS2) family. Our findings would provide critical insight into tuning of carrier mobility, charge carrier relaxation, and electron-hole recombination rates by defect engineering or varying growth condition in few-layer 1T-PtSe2 and other related 2D materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call