Abstract

Optical manipulation has been used for the trapping of micrometer-scaled objects, but it is still difficult to control the motion of small molecules on the nanometer scale at room temperature. Plasmonic metal nanostructures are expected to be useful for the optical manipulation of nanoscale molecules using a highly localized electric field. We use the plasmonic Ag nanostructure for a demonstration of optical trapping through the observation using surface-enhanced Raman scattering (SERS) imaging. The optical measurements were conducted under electrochemical potential control to stabilize the nanostructure with target molecules, 4,4′-bipyridyl (44 bpy). Upon increasing the concentration of 44 bpy molecules in an electrolyte solution at room temperature, the blinking frequency of the SERS signal was different in both the spectra and imaging. The dwell time of the SERS signals was increased from several tens of milliseconds to a few seconds, which suggested the successful observation of plasmonic trapping of small molecules through the surface diffusion control. The observed results prove the importance for the control of the surface coverage of the molecules and its influence on surface diffusion under plasmonic molecular trapping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.