Abstract
While relationship between fracture mechanism and homogeneous microstructures has been fully understood, relationship between fracture mechanism and inhomogeneous microstructures such as the mesosegregation receives less attention as it deserves. Fracture mechanism of the high-strength low-alloy (HSLA) steel considering the mesosegregation was investigated and its corresponding microstructure was characterized in this paper. Mesosegregation refers to the inhomogeneous distribution of alloy elements during casting solidification, and leads to the formation of positive segregation zones (PSZ) and negative segregation zones (NSZ) in ingots. The fracture surface of impact sample exhibits the quasi-cleavage fracture at −21 °C, and is divided into ductile and brittle fracture zone. Meanwhile, the PSZ and NSZ spread across ductile and brittle fracture zone randomly. In ductile fracture zone, micro-voids fracture mechanism covers the PSZ and NSZ, and higher deformation degree is shown in the PSZ. In brittle fracture zone, secondary cleavage cracks are observed in both PSZ and NSZ, but present bigger size and higher quantity in the NSZ. However, some regions of the PSZ still present micro-voids fracture mechanism in brittle fracture zone. It reveals that the microstructures in the PSZ exhibit a higher resistance ability to crack propagation than that in the NSZ. All observations above provide a better visualization of the microstructural factors that resist the crack propagation. It is important to map all information regarding the fracture mechanism and mesosegregation to allow for further acceptance and industrial use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Materials Science & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.