Abstract

Cleavage-crack propagation behavior was investigated in the simulated coarse-grained heat-affected zone (CGHAZ) of bainitic steel using electron backscattering diffraction (EBSD) pattern analysis when a low heat input welding was simulated. From viewpoint of crystallographic analysis, it was the condition in which the Bain zone was smaller than the close-packed plane (CP) group. It was clarified that the Bain zone and CP group boundaries provided crack-propagation resistance. The results revealed that when the Bain zone was smaller than the CP group, crack length was about one quarter the size of that measured when the CP group was smaller than the Bain zone because of the increasing Bain-zone boundaries. Furthermore, it was clarified that the plastic work associated with crack opening and resistance at the Bain and CP boundaries could be visualized by the kernel average misorientation maps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.