Abstract

An experiment with a vertical slot with horizontally seeping water with a dye diffusing from below was performed to help validate and visualize the Q-equivalent model, which describes the mass transfer rate from a source into flowing water, such as that in a repository for nuclear waste. The Q-equivalent model is used for quantifying mass transport in geological repositories. However, the tracer propagated much slower and to a lesser extent than predicted by the model. It was found that the tracer gave rise to a small density gradient that induced buoyancy-driven flow, overwhelming that driven by the horizontal hydraulic gradient. This dramatically changed the mass transfer from the dye source into the water in the slot. For the release of contaminants, this can have detrimental as well as beneficial effects, depending on whether positive or negative buoyancy is induced. These observations led to an analysis of when and how density differences in a repository can influence the release and further fate of escaping radionuclides in waste repositories. This and other experiments also showed that laboratory experiments aimed at visualizing flow and mass transfer processes in fractures could be very sensitive to the heating of the dye tracers by the lighting in the laboratory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.