Abstract

Lithium dendrite growth dynamics on Cu surface is first visualized through a versatile and facile experimental cell by in operando transmission X-ray microscopy (TXM). Galvanostatic plating and stripping cycle(s) are applied on each cell. Upon plating/stripping at ∼1 mA cm–2, mossy lithium is clearly found growing and shrinking on the Cu surface as the application time increases. It is interesting to note that the aspect ratio (height/width) of deposited lithium has increased with charge passed during plating, indicating a faster growing from the base. In addition, the dendritic or mossy lithium has also been observed when various high current densities (25, 12.5, and 6.3 mA cm–2) are applied in different cycles, showing a severe dendritic lithium formation that could be induced by inhomogeneous current distribution. The clear structure of dead lithium is found after the cycling, which also shows a lower efficiency and higher hazard when a higher current density is applied. This work explores TXM as a use...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.