Abstract

Introduction. The development of machine learning methods has given a new impulse to solving inverse problems in mechanics. Many studies show that along with well-behaved techniques of ultrasonic, magnetic, and thermal nondestructive testing, the latest methods are used, including those based on neural network models. In this paper, we demonstrate the potential application of machine learning methods in the problem of two-dimensional ultrasound imaging. Materials and Methods. We have developed an experimental model of acoustic ultrasonic non-destructive testing, in which the probing of the object under study takes place, followed by the recording of the response signals. The propagation of an ultrasonic wave is modeled by the finite difference method in the time domain. An ultrasonic signal received at the internal points of the control object is applied to the input of the convolutional neural network. At the output, an image that visualizes the internal defect is generated. Results. In the course of the performed complex of numerical experiments, a data set was generated for training a convolutional neural network. A convolutional neural network model, which is developed to solve the problem of visualizing internal defects based on methods of ultrasonic nondestructive testing, is presented. This model has a small size, which is 3.8 million parameters. Its simplicity and versatility provide high-speed learning and a wide range of applications in the class of related problems. The presented results show a high degree of information content of the ultrasonic response and its correspondence to the real form of an internal defect located inside the test object. The effect of geometric parameters of defects on the accuracy of the neural network model is investigated. Discussion and Conclusion. The results obtained have established that the proposed model shows a high operating accuracy (F1 > 0.95) in cases when the wavelength of the probe pulse is tens of times less than the size of the defect. We believe that the combination of the proposed methods in this approach can serve as a good starting point for future research in solving flaw defection problems and inverse problems in general.

Highlights

  • The development of machine learning methods has given a new impulse to solving inverse problems in mechanics

  • We demonstrate the potential application of machine learning methods in the problem of two-dimensional ultrasound imaging

  • A convolutional neural network model, which is developed to solve the problem of visualizing internal defects based on methods of ultrasonic nondestructive testing, is presented

Read more

Summary

МЕХАНИКА MECHANICS

Развитие методов машинного обучения дало новый толчок в области решения обратных задач механики. Что наряду с хорошо зарекомендовавшими себя техниками ультразвукового, магнитного, теплового неразрушающего контроля, применяются новейшие методы, в том числе на основе нейросетевых моделей. На вход сверточной нейронной сети подается ультразвуковой сигнал, полученный во внутренних точках объекта контроля. Представлена сверточная нейросетевая модель, разработанная для решения задачи визуализации внутренних дефектов на основе методов ультразвукового неразрушающего контроля. Представленные результаты показывают высокую степень информативности ультразвукового отклика и его соответствия реальной форме внутреннего дефекта, находящегося внутри объекта контроля. На основе полученных результатов выявлено, что предлагаемая модель показывает высокую точность работы (F1 > 0,95) в случаях, когда длина волны зондирующего импульса в десятки раз меньше размера дефекта. В. Визуализация внутренних дефектов с применением глубокой генеративной нейросетевой модели и ультразвукового неразрушающего контроля / П. Giorgio Don State Technical University (Rostov-on-Don, Russian Federation) 2 Università degli Studi dell'Aquila (L'Aquila, Italy)

Introduction
Нормализованное акустическое давление
Распределение дефектов по их размеру
Точность визуализации дефектов
Влияние размера дефекта на точность визуализации
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call