Abstract

A planar and instantaneous visualization study of high-speed gas jets and their airblast sprays was performed to qualitatively examine the different atomization performances of different gas nozzles. For the visualization of high-speed gas jets (with no liquid injected), Nd:YAG pulsed laser sheets imaged the clustered vapor molecules in the Rayleigh range (d≪λ), condensed from the natural humidity during the isentropic gas expansion through a nozzle. This method visualized both underexpanded sonic gas jets from a converging nozzle (SN-Type) and overexpanded supersonic gas jets from a converging-diverging nozzle (CD-Type). When liquid is cross-injected, the same laser sheet images the spray droplets of relatively large sizes (d?λ). The present visualization results show that the SN-Type nozzle develops a wider spray than the CD-Type nozzle, quite probably because the SN-Type nozzle has a wider gas jet (in the absence of liquid) than the CD-Type. Also, the wider spray of the SN-Type nozzle lowers the probability of droplet coalescence and generates finer sprays compared to the CD-Type nozzle. These visualization results qualitatively agree with the previous quantitative finding of the different atomization characteristics of the two types of nozzles (Park et al. 1996).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call