Abstract

Acute cardiorespiratory breathlessness accounts for one in eight of all emergency hospitalizations. Early, noninvasive diagnostic testing is a clinical priority that allows rapid triage and treatment. Here, we sought to find and replicate diagnostic breath volatile organic compound (VOC) biomarkers of acute cardiorespiratory disease and understand breath metabolite network enrichment in acute disease, with a view to gaining mechanistic insight of breath biochemical derangements. We collected and analyzed exhaled breath samples from 277 participants presenting acute cardiorespiratory exacerbations and aged-matched healthy volunteers. Topological data analysis phenotypes differentiated acute disease from health and acute cardiorespiratory exacerbation subtypes (acute heart failure, acute asthma, acute chronic obstructive pulmonary disease, and community-acquired pneumonia). A multibiomarker score (101 breath biomarkers) demonstrated good diagnostic sensitivity and specificity (≥80%) in both discovery and replication sets and was associated with all-cause mortality at 2 years. In addition, VOC biomarker scores differentiated metabolic subgroups of cardiorespiratory exacerbation. Louvain clustering of VOCs coupled with metabolite enrichment and similarity assessment revealed highly specific enrichment patterns in all acute disease subgroups, for example, selective enrichment of correlated C5-7 hydrocarbons and C3-5 carbonyls in heart failure and selective depletion of correlated aldehydes in acute asthma. This study identified breath VOCs that differentiate acute cardiorespiratory exacerbations and associated subtypes and metabolic clusters of disease-associated VOCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.