Abstract
Mitophagy is an essential mitochondrial quality control pathway, which is crucial for pancreatic islet beta cell bioenergetics to fuel glucose-stimulated insulin release. Assessment of mitophagy is challenging and often requires genetic reporters or multiple complementary techniques not easily utilized in tissue samples, such as primary human pancreatic islets. Here we demonstrate a robust approach to visualize and quantify formation of key endogenous mitophagy complexes in primary human pancreatic islets. Utilizing the sensitive proximity ligation assay technique to detect interaction of the mitophagy regulators NRDP1 and USP8, we are able to specifically quantify formation of essential mitophagy complexes in situ. By coupling this approach to counterstaining for the transcription factor PDX1, we can quantify mitophagy complexes, and the factors that can impair mitophagy, specifically within beta cells. The methodology we describe overcomes the need for large quantities of cellular extracts required for other protein-protein interaction studies, such as immunoprecipitation (IP) or mass spectrometry, and is ideal for precious human isletsamples generally not available in sufficient quantities for these approaches. Further, this methodology obviates the need for flow sorting techniques to purify beta cells from a heterogeneous islet population for downstream protein applications. Thus, we describe a valuable protocol for visualization of mitophagy highly compatible for use in heterogeneous and limited cell populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.