Abstract
Ethidium forms a second crystalline complex with the dinucleoside monophosphate 5-iodocytidylyl(3′–5′)guanosine (iodoCpG). These crystals are monoclinic, P2 1, with a = 14.06 A ̊ , b = 32.34 A ̊ , c = 16.53 A ̊ , β = 117.8 ° . The structure has been solved to atomic resolution using rigid-body Patterson vector search and Fourier methods, and refined by full matrix least-squares to a residual of 0.16 on 3180 observed reflections. The structure consists of two ethidium molecules, two iodoCpG molecules, 27 water molecules and four methanol molecules, a total of 165 atoms (excluding hydrogens) in the asymmetric unit. Both iodoCpG molecules are hydrogen-bonded together by guanine · cytosine Watson-Crick base-pairing. Adjacent base-pairs within this paired iodoCpG structure and between neighboring iodoCpG molecules in adjoining unit cells are separated by 6.7 Å. This distance reflects the presence of an ethidium molecule intercalated between base-paired iodoCpG molecules and another ethidium molecule stacked above (and below) the dinucleotide. Approximate 2-fold symmetry is used in the interaction; this reflects the pseudo-2-fold symmetry axis of the phenanthridinium ring system in ethidium coinciding with the approximate 2-fold axis relating base-paired iodoCpG molecules. The phenyl and ethyl groups of the intercalated ethidium molecule lie in the narrow groove of the miniature iodoCpG double-helix. The stacked ethidium, however, lies in the opposite direction, its phenyl and ethyl groups neighboring iodine atoms on cytosine residues. Base-pairs within the paired nucleotide units are related by a twist of about 8 °. The magnitude of this angular twist reflects conformational changes in the sugar-phosphate chains accompanying intercalation. These primarily reflect the differences in ribose sugar ring puckering that are observed (i.e. both iodocytidine residues have C3′ endo sugar conformations, while both guanosine residues have C2′ endo sugar conformations), and alterations in the glycosidic torsional angles that describe the base-sugar orientation. The information provided by this structure analysis (along with the accompanying one (ethidium:iodoUpA), described in the previous paper) has led to an understanding of the general nature of intercalative drug binding to DNA. This is described in the third paper of this series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.