Abstract
Flow visualization via micro-PIV has been conducted in order to investigate droplet-merging processes in microchannels. The dispersed-phase droplets seeded with 1-μm fluorescent particles are alternately generated in the cross-channel and merged downstream in a straight channel or in a divergent channel. Since droplet merging occurs within a millisecond, a high-speed camera capable of 6,000 fps is used to capture the images of the droplets and the tracer particles therein by observing through a 40× lens. These images reveal that droplets merge through a sequential process of attachment, drainage, interface coalescence, penetration or envelopment depending on the channel geometry. In the straight channel, where the droplets are confined by the channel walls, the rear droplet penetrates the front droplet at the instant of coalescence. However, when the droplets merge in the divergent channel, a strong vortex motion occurs while the rear droplet envelops the front one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.