Abstract
In this paper, we propose a visualization method for driving behavior that helps people to recognize distinctive driving behavior patterns in continuous driving behavior data. Driving behavior can be measured using various types of sensors connected to a control area network. The measured multi-dimensional time series data are called driving behavior data. In many cases, each dimension of the time series data is not independent of each other in a statistical sense. For example, accelerator opening rate and longitudinal acceleration are mutually dependent. We hypothesize that only a small number of hidden features that are essential for driving behavior are generating the multivariate driving behavior data. Thus, extracting essential hidden features from measured redundant driving behavior data is a problem to be solved to develop an effective visualization method for driving behavior. In this paper, we propose using deep sparse autoencoder (DSAE) to extract hidden features for visualization of driving behavior. Based on the DSAE, we propose a visualization method called a driving color map by mapping the extracted 3-D hidden feature to the red green blue (RGB) color space. A driving color map is produced by placing the colors in the corresponding positions on the map. The subjective experiment shows that feature extraction method based on the DSAE is effective for visualization. In addition, its performance is also evaluated numerically by using pattern recognition method. We also provide examples of applications that use driving color maps in practical problems. In summary, it is shown the driving color map based on DSAE facilitates better visualization of driving behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.