Abstract

An important step in the initiation of the innate immune response to virus infection is the recognition of non-self, viral RNA, including double-stranded RNA (dsRNA), by cytoplasmic pattern recognition receptors (PRRs). For many positive-sense RNA viruses and DNA viruses, the production of viral dsRNA, and the interaction of viral dsRNA and PRRs are well characterized. However, for negative-sense RNA viruses, viral dsRNA was thought to be produced at low to undetectable levels and PRR recognition of viral dsRNA is still largely unclear. In the case of arenaviruses, the nucleocaspid protein (NP) has been identified to contain an exoribonuclease activity that preferentially degrades dsRNA in biochemical studies. Nevertheless, pathogenic New World (NW) arenavirus infections readily induce an interferon (IFN) response in a RIG-I dependent manner, and also activate the dsRNA-dependent Protein Kinase R (PKR). To better understand the innate immune response to pathogenic arenavirus infection, we used a newly identified dsRNA-specific antibody that efficiently detects viral dsRNA in negative-sense RNA virus infected cells. dsRNA was detected in NW arenavirus infected cells colocalizing with virus NP in immunofluorescence assay. Importantly, the dsRNA signals also colocalized with cytoplasmic PRRs, namely, PKR, RIG-I and MDA-5, as well as with the phosphorylated, activated form of PKR in infected cells. Our data clearly demonstrate the PRR recognition of dsRNA and their activation in NW arenavirus infected cells. These findings provide new insights into the interaction between NW arenaviruses and the host innate immune response.

Highlights

  • An essential aspect of the innate immune response is the activation of pattern recognition receptors (PRRs)

  • By using the monoclonal antibodies (MAb) 9D5 to detect double-stranded RNA (dsRNA), we provide evidence that dsRNA is produced during New World (NW) arenavirus infection, and interacts with cytoplasmic PRRs, such as Protein Kinase R (PKR), RIG-I and melanoma differentiation-associated antigen 5 (MDA-5)

  • It is generally accepted that negative-sense RNA virus infections produce lower levels of dsRNA as compared with positive RNA virus infections

Read more

Summary

Introduction

An essential aspect of the innate immune response is the activation of pattern recognition receptors (PRRs). PRRs can recognize pathogen-associated molecular patterns (PAMPs), which leads to the induction of an interferon (IFN) response or inhibition of virus translation (Jensen and Thomsen, 2012). The RLRs, RIG-I and melanoma differentiation-associated antigen 5 (MDA-5), consist of a C-terminal ssRNA/dsRNA or dsRNA binding domain, respectively (Jensen and Thomsen, 2012). RIG-I has a substrate specificity for 5′ triphosphate ssRNA or dsRNA, whereas MDA-5 recognizes longer dsRNA species (Jensen and Thomsen, 2012). Many viruses have evolved different strategies to evade PRR recognition by either hiding dsRNA from recognition, masking dsRNA through termini processing, or directly interacting with the RLRs or downstream components of the RLR activation pathway in order to suppress the innate immune responses (Zinzula and Tramontano, 2013)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call