Abstract

Radiation can be visualized using a scintillator and a digital camera. If the amount of light emitted by the scintillator increases with dose, the dose estimation can be obtained from the amount of light emitted. In this study, the basic performance of the scintillator and digital camera system was evaluated by measuring computed tomography dose index (CTDI). A circular plastic scintillator plate was sandwiched between polymethyl methacrylate (PMMA) phantoms, and x-rays were irradiated to them while rotating the x-ray tube to confirm changes in light emission. In addition, CTDI was estimated from the amount of light emitted by the scintillator during the helical scan and compared with the value measured from dosimeter. The scintillator emitted light while changing its distribution according to the movement of the x-ray tube. The measured CTDIvol was 33.20 mGy, the CTDIvol estimated from the scintillation light was approximately 46 mGy, which was 40% larger. In particular, when the scintillator was directly irradiated, the dose was overestimated compared with the value measured from the dosimeter. This overestimation can be because of the reproducibility of the position and the difference between the sensitivity of the scintillator to detect light emission and the sensitivity of the dosimeter, and the non-uniformity of position sensitivity due to the wide-angle lens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call