Abstract

In this study, the total heatfunction equation which includes diffusion and convection transport is divided into the corresponding heatfunction equations. The superposition rule is used to obtain the mathematical definitions of diffusion and convection heatfunctions and corresponding boundary conditions. It is observed that the separate visualization of diffusion and convection heatlines provides significant information on understanding of the mechanism of heat transfer in a convective flow. The direction of the diffusion and convection heat transport as well as the strength of convection compared to the conduction in entire or in a portion of a domain can be visualized. The diffusion heatlines demonstrate a potential flow like behavior while convective heat flow rotates due to the source term of the convection heatfunction equation, similar to the rotation of fluid flow generated by fluid flow vorticity. The similarity between the streamfunction and the total heatfunction yields a concept of heat flow vorticity, Ω t . The obtained results show that the maximum absolute value of the convection heatfunction may be an appropriate parameter for determination of the convection strength. The diffusion and convection heatfunction equations for natural convection in a differentially heated square cavity for four different length of the heated surface on the right vertical wall as s p = L/4, L/2, 3 L/4 and L and a fixed length of the cooled surface on the right vertical wall as L/4 are obtained and corresponding heatlines are drawn. The values of the conduction heatfunction are positive while the sign of convection heatfunction values is negative for the studied cases. Based on the distribution of total heatlines, two regions are detected in the cavity, an active region with the positive values of heatlines signifying dominant conduction heat transfer and a passive region with the negative heatfunction values in where convection heat flow is dominant and heat only rotates in a closed contour pattern. The variations of average Nusselt number, average of heat flow vorticity, maximum absolute values of convection heatfunction and streamfunction at different Rayleigh numbers and lengths of the heated surface are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.