Abstract

With the development of acoustic simulation methods in recent decades, it has become feasible to simulate the sound pressure distribution of loudspeakers before actually setting physical speakers and measuring the sound field. The parametric array loudspeaker (PAL) has attracted attention due to its sharp directivity and unique applications. However, the sound reproduced by PALs is generated by the nonlinear interactions of ultrasound in the air, which makes it difficult to simulate the reproduced sound of a PAL with low computational load. Focusing on the sharp directivity of ultrasound, we extended conventional acoustic ray-tracing methods to consider the self-demodulation phenomenon of PALs. In this study, we developed a visualization method for the demodulated sound of a PAL. Specifically, the demodulated sound pressure distribution can be simulated to estimate and visualize the area covered by the reproduced sound of PAL before setting a real PAL. In the proposed method, acoustic rays were generated sequentially to express the generation of demodulated sound. Therefore, the proposed method is expected to simulate the demodulated sound of a PAL with acceptable accuracy and low calculation complexity. Quantitative evaluation between simulation results and practical measurement has been carried out, and the results demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.