Abstract
We have visualized a fluorescently-labeled poly(styrene- b-methylmethacrylate) (NBD-PS- b-PMMA) block copolymer on the surface of a polymethylmethacrylate (PMMA) drop in a polystyrene (PS) matrix. Confocal microscopy revealed that the block copolymer distributed uniformly on the drop surface before deformation. However, in shear flow the copolymer concentration was higher at the tips and edges of the drop. Visualization of drop deformation using a counter-rotating apparatus showed enhanced drop deformation for a drop with block copolymer resulting in larger area generation. Drops with block copolymer showed widening even for shear strains exceeding 10, in contrast to bare drops, which first widened and then shrank. These results agree qualitatively with the observed distribution of fluorescent block copolymer. Copolymer concentration is highest in the regions of high curvature, where lowering interfacial tension should be most effective in retarding drop retraction. Block copolymer on these highly curved surfaces is found to be very effective since the exact theory for zero interfacial tension by Cristini fits our drop widening results well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.