Abstract

Because of uncertainties regarding the complete antihypertensive mechanism of action of beta-adrenoceptor antagonists, the present study determined whether vagal afferent neurons of humans and rats possess beta-adrenoceptors. Such a location would provide an appropriate target for beta-blockers to modulate neurotransmission of barosensitive neurons, thereby affecting blood pressure. Therefore, in vitro receptor autoradiography of high-affinity beta-adrenoceptor binding sites was performed on slices of human and rat inferior vagal (nodose) ganglia with [125I]-pindolol. Slide-mounted sections of human and rat inferior vagal ganglia were incubated with [125I]-pindolol in the absence or presence of propranolol (10 mumol/l) to define non-specific binding, atenolol (10 mumol/l) to inhibit binding to beta 1-adrenoceptors, or ICI 118551 (3 nmol/l) to inhibit binding to beta 2-adrenoceptors. Unilateral vagal ligation was also performed in the rat to study whether beta-adrenoceptors are subject to axonal transport along the vagus nerve. [125I]-pindolol bound with > 90% specific binding to sections both of human and of rat inferior vagal ganglia. Specific binding occurred over both neuronal perikarya and nerve fibres. In both species the beta 2-adrenoceptor subtype appeared to predominate, as defined by the differential ability of ICI 118551 (beta 2) and atenolol (beta 1) to inhibit the binding of [125I]-pindolol. Furthermore, unilateral vagal ligation in the rat caused an accumulation of specific binding adjacent to the ligature sites. We conclude that human and rat vagal afferent (and efferent) neurons possess beta-adrenoceptors that potentially could explain the mechanism of action of beta-adrenoceptor antagonists in the therapy of hypertension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.