Abstract

In the pathogenesis of Alzheimer's disease (AD), highly neurotoxic amyloid-β (Aβ) oligomers appear early, they are thus considered to be deeply involved in the onset of Alzheimer's disease. However, Aβ oligomer visualization is challenging in human tissues due to their multiple forms (e.g., low- and high-molecular-weight oligomers, including protofibrils) as well as their tendency to rapidly change forms and aggregate. In this review, we present two visualization approaches for Aβ oligomers in tissues: an immunohistochemical (using the monoclonal antibody TxCo1 against toxic Aβ oligomer conformers) and imaging mass spectrometry using the small chemical Shiga-Y51 that specifically binds Aβ oligomers. TxCo1 immunohistochemistry revealed Aβ oligomer distributions in postmortem human brains with AD. Using Shiga-Y51, imaging mass spectrometry revealed Aβ oligomer distributions in the brain of a transgenic mouse model for AD. These two methods would potentially contribute to elucidating the pathological mechanisms underlying AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call