Abstract
The effect of aggregation of dispersed water droplets on secondary atomization of emulsified fuel droplets in a heating process was investigated. Secondary atomization was observed using a single droplet experiment in which a water-in-oil (W/O) emulsified fuel droplet prepared using colored water was heated by a halogen heater. The initial diameter of dispersed water droplets before heating was controlled, and the change in the diameter of dispersed water droplets was measured by image analysis. As a result, the aggregation process of dispersed water droplets in the heating process was successfully visualized. The dispersed water droplet diameter increased with an increase in W/O emulsified fuel droplet temperature. The occurrence probability of micro-explosion increased with an increase in the dispersed water droplet diameter in emulsified fuel droplets. It is suggested that the occurrence probability of micro-explosion can be increased by accelerating the aggregation and coalescence of dispersed water droplets below 430 K, which is the average temperature of the starting point of puffing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.